Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 243: 154350, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780842

RESUMO

Rocaglamide (ROC), a natural phytochemical isolated from Aglaia species, is a translational inhibitor of de novo c-FLIP synthesis, which relieves the inhibition of c-FLIP dimerization with procasoase-8 and downstream activation. Unfortunately, a lot of cancer cells, especially colorectal cancer cells (CRC), exhibit marked resistance to Rocaglamide-induced cell death. Research has demonstrated that mitomycin C (MMC) has broad-spectrum anti-tumor activity that it can synergize with a wide range of clinical drugs to inhibit tumor growth. The current study investigated whether MMC combined with ROC could sensitize CRC cells with different ROC resistance to apoptosis. HCT116 and HT29, two different CRC cells, were treated with ROC and/or MMC, and the induction of apoptosis, inhibition of cell migration and invasion, arrest of cell cycle, induction of reactive oxygen species, and effects on Bcl-2 family signaling pathway were investigated. The results showed that low concentration of MMC combined with ROC significantly promoted HCT116 and HT29 cell apoptosis and inhibited cell proliferation by downregulating the expression of Bcl-2 and c-FLIP, upregulating the expression of Bax, activating the caspase cascade (involving the mitochondrial apoptosis pathway), arresting cell cycle in G1 phase, and increasing the level of reactive oxygen species (ROS). In addition, the viability and morphology of MRC-5 cells were not significantly affected by the combined treatment with ROC and MMC, indicating its safety. Therefore, it is concluded that the combination treatment of ROC and MMC is a highly effective tumor therapy and may offer a promising therapeutic strategy for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Mitomicina , Humanos , Mitomicina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Proteínas Reguladoras de Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
2.
Int J Biol Macromol ; 229: 1036-1043, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36603727

RESUMO

Ammonia and nitrite are nitrogenous pollutants in aquaculture effluents, which pose a major threat to the health of aquatic animals. In this study, we developed a nitrogen conversion strategy based on synthesis of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2. The nitrogen removal efficiency of NX-2 was closely related to synthesizing γ-PGA, and was positively correlated with the inoculum level. The degradation rates of ammonia nitrogen and nitrite at 104 CFU/mL were 84.42 % and 62.56 %, respectively. Through adaptive laboratory evolution (ALE) experiment, we obtained a strain named ALE 5 M with ammonia degradation rate of 98.03 % and nitrite of 93.62 % at the inoculum level of 104 CFU/mL. Transcriptome analysis showed that the strain was more likely to produce γ-PGA after ALE. By enzyme activity and qPCR analysis, we confirmed that ALE 5 M degraded ammonia nitrogen through γ-PGA synthesis, which provided a new way for nitrogen removal in aquaculture water.


Assuntos
Amônia , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Amônia/metabolismo , Nitrogênio/metabolismo , Nitritos/metabolismo , Bacillus subtilis/metabolismo , Ácido Poliglutâmico/metabolismo , Aquicultura
3.
Int J Biol Macromol ; 209(Pt A): 396-404, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413311

RESUMO

Plant growth-promoting rhizobacteria (PGPR) and their extracellular polymers such as exopolysaccharides can enhance rice salt stress resistance, however, the relevant mechanism remains unclear. In this study, an exopolysaccharides-deficient strain, named ΔpspD, was obtained from Pantoea alhagi NX-11 by chromosomal pspD deletion. The yield and characteristics of ΔpspD exopolysaccharides was obviously different from P. alhagi NX-11 exopolysaccharides (PAPS). Subsequently, hydroponic experiments showed that NX-11 or PAPS could enhance rice salt tolerance, but ΔpspD could not. Furthermore, it was found that PAPS promoted P. alhagi rhizosphere colonization through a direct effect on biofilm formation, as well as through an indirect impact of enhancing the abilities of biofilm formation and chemotaxis by altering rice root exudates. Importantly, the effect of PAPS in promoting the root colonization of NX-11 was specific. Through transcriptome and RT-qPCR analysis, we revealed that this specificity correlated with PAPS-induced lectin overexpression. The specificity between exopolysaccharides and the host microorganism ensures the colonization of the latter, and prevents other microorganisms from hitchhiking to the rice roots.


Assuntos
Oryza , Pantoea , Pantoea/genética , Raízes de Plantas/microbiologia , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...